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Divisibilty

Definition (Divisibility)

We say that an integer number a ∈ Z is divisible by an integer b ∈ Z different
from 0, if there exists another integer k ∈ Z such that a = bk. It is also said b
is a divisor of a, or b divides a, or a is a multiple of b. This is denoted as b | a.

Example: 3 divides 6 (or 6 is a multiple of 3), but 3 does not divide 5.

Definition (Prime numbers)

We say that a natural number p > 1 is prime if their two unique divisors
(natural numbers) are 1 and p itself. If a natural number greater than 1 is not
prime, then we say that it is composed.

The smallest prime numbers are 2,3,5,7,11,13 . . .
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GCD & LCM

Definition (GCD and LCM)

The Greatest Common Divisor of the integer numbers a1,a2, . . . ,an 6= 0 is the
greatest positive number that divides all of them.

It is denoted as gcd(a1, . . . ,an).

The Least Common Multiple of the integer numbers a1,a2, . . . ,an 6= 0 is the
smallest positive integer that is a multiple of all of them.

It is denoted as lcm(a1,a2, . . . ,an).

We say that a,b ∈ Z are prime respect to the oher if gcd(a,b) = 1.
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The Fundamental Theorem of Arithmetics

Theorem (The Fundamental Theorem of Arithmetics)

Every natrual number n > 1 can be written in a unique way (except by the
order) as a product of prime numbers.

Example: 24 = 23 ·3 and 126 = 2 ·32 ·7.

Consequences

Let a and b two nonnull integers. Consider the decompositions of |a| and |b| as
a product of prime factors. Then

1 gcd(a,b) is the product of all the prime factors which are common to
both decompositions powered to the smallest exponent.

2 lcm(a,b) is the product of all the prime factors that appear in any of the
decompositions (common and not common) powered to the greatest
exponent.

3 gcd(a,b) · lcm(a,b) = |a ·b|.

Example: gcd(24,126) = 2 ·3 = 6. lcm(24,126) = 23 ·32 ·7 = 504.

Alberto Conejero Lesson 2. Relations and sets. Version 2010/11/8



Divisibility
Euclidean division

Modular arithmetics
Congruence equations

Euclidean algorithm
Example
Bezout Identity

Euclidean division

Theorem

Let a,b ∈ Z, with b > 0. Then there are two unique integer numbers q, r such
that a = q ·b + r and 0≤ r < b.

The numbers a, b, q, and r are called dividend, divisor, quotient, and
remainder, respectively.

Example

If a = 7 and b = 5, then 7 = 1 ·5 + 2.

If a = 5 and b = 7, then 5 = 0 ·7 + 5.

If a =−7 and b = 5, then −7 =−2 ·5 + 3.

If a =−5 and b = 7, then −5 =−1 ·7 + 2.
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Euclides algorithm

The Euclides algorithm let us compute the greatest common divisor of two
integer numbers without needing to find all the decompositions as a product of
prime numbers. This is based on the following property:

Lemma

If a, b ∈ Z, and b 6= 0, then gcd(a,b) = gcd(b, r), where r is the remainder of
the Eucllidean division of a by b.

This can be proved testing that the common divisors of a and b are the same
common divisors of b and r .

Euclides algortihm

The Euclides algorithm consists on applying several times this property,
reducing the size of the numbers without changing the gcd.
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Example

Example (Let us compute the gcd(689,234) using the Euclides algorithm.)

1 Divide a = 689 by b = 234:
689 |234
221 2

2 Divide the divisor by the remainder:
234 |221
13 1

3 Divide the new divisor by the new remainder:
221 |13

0 17

The last nonnull remainder is 13. So that, gcd(689,234) = 13.

Since gcd(689,234) · lcm(689,234) = 689 ·234, we can have the least common
multiple of 689 and 234:

lcm(689,234) = 689 ·234/13 = 12402.
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Another example

Example (Compute gcd(54321,50) using the Euclides algorithm)

54321 |50
21 1056

50 |21
8 2

21 |8
5 2

8 |5
3 1

5 |3
2 1

3 |2
1 1

2 |1
0 2

Since the remainder is nonnull, then 1 is the gcd(54321,50) = 1, therefore
54321 and 50 are primes respect to the other.

In addition, the least common multiple is:

lcm(54321,50) = 54321 ·50/gcd(54321,50) = 2716050.
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Consequences of the Euclides algorithm

The Euclidean algorithm let us prove an important theorem on Number Theory,
the Bézout Identity, that states that the greatest common divisor of two
numbers can be written as a linear combination of both of them:

Theorem (Bezout Identity)

For every pair of numbers a,b ∈ Z, there exists two numbers x ,y ∈ Z such that

gcd(a,b) = x ·a +y ·b.

In addition, all the multiples of gcd(a,b), and only them, can be written as a
linear combination of a and b.

Corollary

If a,b,c ∈ Z, then there exists x ,y ∈ Z such that c = x ·a +y ·b if and only if
gcd(a,b) | c.
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Example of the Bézout Identity

Example (Compute x ,y ∈ Z such that mcd(250,111) = x ·250 +y ·111.)

We apply the Euclides algorithm to compute gcd(250,111). Besides we will
express the remainder of each one of the divisions as a sum of multiples of 250
and 111:

250 |111
28 2

250 = 2 ·111 + 28 ⇒ 28 = 250−2 ·111

111 |28
27 3

111 = 3 ·28 + 27 ⇒ 27 = 111−3 ·28

= 111−3 · (250−2 ·111)

=−3 ·250 + 7 ·111

28 |27
1 1

28 = 1 ·27 + 1 ⇒ 1 = 28−1 ·27

= (250−2 ·111)−1 · (−3 ·250 + 7 ·111)

= 4 ·250−9 ·111

27 |1
0 27

null remainder ⇒ mcd(250,111) = 1

x = 4 and y =−9 satisfy the Bézout identity: 1 = 4 ·250 + (−9) ·111
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Congruence relations

We will study the congruence relation modulo m with more details.

Definition (Congruence relation)

If m ∈ Z, m > 1, we say that two integer numbers a and b are congruents
modulo m if a−b is a multiple of m. We write it as a≡ b (mod m).

We can easily prove:

Proposition

a≡ b (mod m) if and only if the remainders of the Euclidean division of a and
b by m coincide.

Example (Example)

17≡ 53 (mod 6) because 17−53 =−36, which is a multiple of 6.
On the other hand, we can use the previous proposition: The remainder of the
divisions of 17 and 53 by 6 coincide since

17 |6
5 2

53 |6
5 8
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Integers modulo m

Proposition

A congruences modulo m is an equivalence relation (it is reflexive, symmetric,
and transitive).

Therefore, we can construct the correspondence quotient set:

Notation

Consider a positive integer number m > 1.

We denote by Zm the quotient set of Z respect to the congruence relation
modulo m.

The elements in Zm are the equivalence classes of this relation. They are
called residual classes modulo m (or simply the integers modulo m) and
we denote them by a, with a ∈ Z.

For all a ∈ Z we have that a = r in Zm, where r is the remainder of the
Euclidean division of a by m. Therefore, Zm has excatly m elements:

Zm = {0,1, . . . ,m−1}
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The integers modulo m

If m = 2, then Z2 = {0,1}, where
0 = {a ∈ Z | a≡ 0 (mod 2)}= {. . . ,−4,−2,0,2,4, . . .}= {2n | n ∈ Z}

1 = {a ∈ Z | a≡ 1 (mod 2)}= {. . . ,−3,−1,1,3,5, . . .}= {1+2n | n ∈ Z}

If m = 3, then Z3 = {0,1,2}, where
0 = {a ∈ Z | a≡ 0 (mod 3)}= {. . . ,−6,−3,0,3,6, . . .}= {3n | n ∈ Z}

1 = {a ∈ Z | a≡ 1 (mod 3)}= {. . . ,−5,−2,1,4,7, . . .}= {1+3n | n ∈ Z}

2 = {a ∈ Z | a≡ 2 (mod 3)}= {. . . ,−4,−1,2,5,8, . . .}= {2+3n | n ∈ Z}

In general, Zm = {0,1,2, . . . ,m−1}, where
0 = {a ∈ Z | a≡ 0 (mod m)}= {m ·n | n ∈ Z}

1 = {a ∈ Z | a≡ 1 (mod m)}= {1+m ·n | n ∈ Z}

2 = {a ∈ Z | a≡ 1 (mod m)}= {2+m ·n | n ∈ Z}
...

m−1 = {a ∈ Z | a≡m−1 (mod m)}= {(m−1)+m ·n | n ∈ Z}
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Operations in Zm

Definition (Sum and product in Zm)

If a and b are two elements of Zm, then the sum and product of a and b is
defined as follows:

a +b = a +b, a ·b = a ·b

The definition of these operations does not depend of the representants
choosen for every residual class:

Examples: In Z4, 2 + 3 = 5 = 1, and in Z7, 3 ·6 = 18 = 4.

Showing the results

If m is small, we can construct a table with double input with all the possible
results of the sum in Zm (and also for the product). This kind of tables are
known as the Cayley table of the operation.

Example: Let us to construct the Cayley tables of the sum and the product in
Z6.
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Operations in Zm

Remarks

The sum and the product in Zm are commutative and associative.

The product is distributive respect to the sum.

0 are 1 indentity elements respect to sum and the product, respectively.

Every element of Zm has a symmetric element respect to the sum (also
known as opposed). In particular, the opposed number of a is −a, since
a +−a = 0.

However, not all the elements in Zm have a an invers element for the product.

0 has no inverse element in Zm because 0 ·a = 0 6= 1, ∀ a ∈ Zm.

3 has no inverse element in Z6 since there is no element a of Z6 that
satisfies 3 ·a = 1.

Let us see how to know if an integer modulo m has an inverse element, and if it
exists, let us see how to compute it.
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Inverse elements in Zm

a ∈ Zm The inverse ⇐⇒ There exists x ∈ Zm such that a ·x = 1 in Zm

⇐⇒ There exists x ∈ Z such that (a ·x)−1 is a multiple of m

⇐⇒ There exists x ,y ∈ Z such that 1 = a ·x +y ·m.

From the previous equivalence we can easily define the following result as a
consequence of Bézout equality:

Theorem

a 6= 0 has an inverse (respect to the product) in Zm if, and only if,
gcd(a,m) = 1.

How to find the inverse element?

If gcd(a,m) = 1, in order to find the inverse element of a in Zm it is enough to
find two integer numbers x ,y ∈ Z such that 1 = x ·a +y ·m, that is, the
coefficients of a Bézout equality for a and m.

In that case, x will be the inverse of a in Zm (that we denote as a −1).
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Example

Example (Prove that 11 has an invers in Z27 and find it.)

It can be proved that gcd(27,11) = 1. Therefore, by the previous theorem, 11
has an invers in Z27.
In addition, we can obtain the invers of 11 in Z27 if we compute the Bézout
identity for 11 and 27:

27 |11
5 2

27 = 2 ·11 + 5 ⇒ 5 =−2 ·11 + 27

11 |5
1 2 11 = 2 ·5 + 1 ⇒ 1 =−2 ·5 + 11 =−2 · (−2 ·11 + 27) + 11

= 5 ·11 + 1 ·27

5 |1
0 5

null remainder ⇒ gcd(250,111) = 1 = 5 ·11−2 ·27

The inverse of 11 in Z27 is the class of the coefficient of 11 in the previous
Bézout identity (since from that equality it can be deduced that 1 = 5 ·11 in
Z27). Therefore,

11
−1

= 5, in Z27.
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Remarks

If we compute the inverse of an integer number a modulo m using the previous
process, we have to express the residual class using the corresponding class in
{0,1, . . . ,m−1} (since in the process it is assumed that a < m).

Example (To compute the inverse of 19 in Z7)

We apply the previous process to 5, since 19 = 5 in Z7 and 5 < 7.

If m is small, the inverse of an integer modulo m can be computed just making
a brief search and testing all the possible choices.

Let us comute the inverse of 5 in Z7

We can obtain the inverses computing the sequence of products 5 ·x where
x ∈ Z7 = {0,1,2,3,4,5,6} until we get 1 as a result 1:
Since 5 ·0 = 0 5 ·1 = 5 5 ·2 = 10 = 3 5 ·3 = 15 = 1.Therefore, the inverse of

5 in Z7 is 3.
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Linear congruence equations

In the previous section we have analyzed the problem of finding the invers (if
there exists) of an element a of Zm, that is, the problem of solving the
following equation in Zm (if there exists a solution):

a ·x = 1.

We will deal with the more general problem of solving any linear equation of
first order in Zm, that is, any equation in Zm of the form:

a ·x = b,

where a,b ∈ Zm \{0}, and x is an unknown that represents a class of Zm.
These equations can also be posed in the form:

a ·x ≡ b (mod m).
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Solving congruence equations

We analyze in which cases we can solve the equation a ·x = b in Zm.

∃ x ∈ Zm such that a ·x = b⇐⇒∃ x ∈ Z such that a ·x ≡ b (mod m)

⇐⇒∃ x ∈ Z such that (a ·x)−b is a multiple of m

⇐⇒∃ x ,y ∈ Z such that a ·x +m ·y = b.

By the previous equivalence and the corollary of Bézout identity we have:

Theorem

The equation a ·x = b in Zm has a solution if, and only if, gcd(a,m) | b.

This theorem shows in which cases we have a solution for that equation, but we
do not know how many solutions we have. This information is provided by the
next result.

Theorem

If d = gcd(a,m) divides b, then the equation a ·x = b in Zm exactly has d
solutions.
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Solution of congruence equations

The solution of a equation of the type a ·x = b in Zm (with a,b 6= 0) depends
on the value of gcd(a,m):

Case 1: gcd(a,m) = 1. The equation ā · x̄ = b̄ has only one solution that is
obtained multiplying both members of the equation by the inverse of a in
Zm: x̄ = ā −1 · b̄.

Case 2: gcd(a,m) 6= 1 but divides b. The equation has d solutions, where
d = gcd(a,m). Since d divides a,m, and b we can construct the equation

a

d
·x =

b

d
, in Z m

d
(equation of case 1).

If s is the solution of the previous equation modulo m
d , then the d

solutions of the former equation ā · x̄ = b̄ in Zm are:

s, s +
m

d
, s + 2 · m

d
, . . . ,s + (d−1) · m

d

Case 3: gcd(a,m) does not divide b. The equation ā · x̄ = b̄ in Zm has no
solution.
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Example (Solve the congruence equation 11 ·x ≡ 6 (mod 27))

This is the same as solving is

11 ·x = 6, in Z27

Since gcd(11,27) = 1, this equation has only one solution, (Case 1).
For computing this solution, we multiply both sides of the equation by the
invers of 11 in Z27. So that, it is enough with computing that inverse. We did
this before and we obtained

11
−1

= 5, in Z27.

Multiplying by 11
−1

both sides of the equation we obtain:

x = 11
−1 ·6 = 5 ·6 = 30 = 3, en Z27.

Therefore, the equation 11 ·x = 6 in Z27 has the solution x = 3.
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Example (Solve the congruence equation 18 ·x ≡ 6 (mod 15))

This is the same as the equation 18 ·x = 6 in Z15.

Attention!!

We cannot simplify a 6 since 6 has no inverse in Z15. That is, the equation is
not equivalent to the equation 3 ·x = 1, in Z15 (this last equation has no
solution, it is an example of case 3).

Example

Firstly, we write 18 using its representant in {0,1, . . . ,14}. So that 18 = 3 in
Z15, and the initial equation is equivalent to:

3 ·x = 6, in Z15.

We can directly see that 2 is a solution of this equation, but it is not the only
one (since 3 has no inverse in Z15). As gcd(3,15) = 3 6= 1 but it divides 6 (the
other coefficient), the equation has 3 solutions (Case 2).
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Example (Cont.)

Since the two coefficients and the modulo are divisible by 3, we can divide
them and we obtain an equivalent equation to the first one, but with modulo 5:

1 ·x = 2, in Z5. (a Case 1 equation)

This equation is already solved because the coefficient of x is 1 (in another
case, we have to compute its inverse in order to solve it). It is x = 2 in Z5.
Now, in Z5, 2 = 7 = 12 = . . ., but in Z15, these 3 classes are different.
Therefore, the solution of the equation in Z5 gives 3 different solutions of the
former equation in Z15:

x = 2

x = 7

x = 12

where each one is obtained from the other just increasing 5.
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