MsC in Bioinformatics and Biostatistics

I recently obtained a Msc in Bioinformatics and Biostatitsics from Universitat Oberta de Catalunya and Universitat de Barcelona. My capstone project was entitled «Machine learning methods for characterizing single-particle trajectories with anomalous diffusion» under the supervision of Ferran Reverter Comes.

Machine learning methods for characterizing single-particle trajectories with anomalous diffusion

Single-Particle Tracking (SPT) appears to be a potential approach to studying different dynamic processes in the life sciences with recent advances in light microscopy. The physics of life molecules has an inherent instability due to the heterogeneity of free energy states that different types of molecules can show, far from thermal equilibrium and ranging at different scales, from the nanoscale of a single molecule up to the cellular or even organism level. The classification of trajectories is a relevant topic, not only in the biological field at the molecular level but also at the level of animal and human behavior. Besides, this topic combines physical principles with some degree of uncertainty, which habilitates us for exploring the use of ML techniques.

 

Research paper on Network Science and Machine Learning

It has already been published our paper «Community detection based deep neural network (CD-DNN) architectures: a fully automated framework for Likert scales» in the mathematical journal Mathematical Methods in Applied Science, where we apply network community detection in order a suitable infrastructure for an Artificial Neural Network. This permits to efficiently use raw data from psychological questionnaires based on Likert scales.

Community detection and neural networks.